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Abstract -The energy equation of a rigid sphere in a VISC‘OU~ fluid subject to an unsteady flow and 
temperature field is developed. A perturbation method is used to derive the heat transfer from a rigid 
sphere at low Peclet numbers. Thus, the temperature field is decomposed into the undisturbed field and the 
disturbance due to the presence of the sphere. A symmetry relationship is used to yield the rate of heat 
transfer due to the disturbance in the Laplace domain. The transformation of the rate of heat transfer in 
the time domain yields a history integral, which combines the effects of all past temperature changes of the 
sphere. This history integral in the energy equation is analogous to the history force (or Basset force) in 
the equation of motion of the sphere. By the heat&momentum transfer analogy, it is anticipated that the 
history term will play an important role in hquid- solid heat or mass transfer and that, depending on the 
frequency of the fluid temperature domain. it may account for up to 25% of the instantaneous heat transfer. 

INTRODUCTION 

THE EQUATION for the creeping motion of a spherical 
particle was derived more than one hundred years ago 
as an exact solution of the Navier-Stokes equations 
in spherical coordinates by Boussinesq [l] and Basset 
[2]. Several higher order corrections to the Bous- 
sinesq-Basset equations have been proposed since 
then ; one of the most recent ones was done by Maxey 
and Riley [3] who derived the complete equation of 
motion of a particle in an unsteady flow field. One of 
the salient features of the equation of motion of the 
particle is the appearance of the history integral term 

which includes all the past accelerations of the sphere 
in the unsteady velocity field. This term augments the 
steady-state drag on the sphere. This integral term is 
sometimes called the Basset term or the history term 
[4] and was observed [5] to account for as much as 
25% of the instantaneous drag force on the sphere. 

Regarding the heat transfer equation from a sphere. 
it is usually given for the steady-state conditions in 
terms of an average heat transfer coefficient and the 
temperature difference between the sphere and the 
surrounding fluid. This results to a simpler form for 
the energy equation for the sphere [4] which has been 
used in many engineering applications. It has been 
observed, however [4. 61, that fluid oscillations 
improve the heat and mass transfer rates in industrial 
equipment. Part of this improvement is probably due 
to the increased holdup of particles in the column and 
to the observed break-up of bubbles and droplets. 

There is another part, however, which has to do with 
the nature of the energy equation of the sphere in 
an unsteady flow and temperature field. This part is 
analogous to the history term of the equation of 
motion of the sphere and includes the effects of the all 
previous temperature changes of the sphere and the 
surrounding fluid. An allusion to this term for the 
unsteady conduction regime appears in Carslaw and 
Jaeger [7] : the error function term, which includes the 
history of previous temperature changes appears in 
several solutions for the heat conduction from a 
sphere or a cylinder. Except for this allusion, however, 
there is no other evidence of the history term in the 
energy equation of a spherical particle in a viscous 
fluid. 

The energy equation of a sphere in unsteady tem- 
perature and velocity fields is developed in the present 
work. The temperature field is decomposed into an 
undisturbed component and the disturbance caused 
by the presence of the sphere. The total rate of heat 
transfer due to both components is obtained first in 
the Laplace domain and then by a transformation in 
the time domain. Hence, the complete energy equation 
for a sphere in a time-varying temperature field is 
developed. The energy equation includes a term. 
which is analogous to the history term of the equation 
of motion. 

ENERGY EQUATIONS FOR THE FLUID AND 
THE SPHERE 

We consider a fluid moving with velocity L‘, relative 
10 a fixed coordinate system O.Y,.X~.K? and a sphere 
moving inside this fluid with velocity V1(t) relative to 
the same coordinate system. The temperature of the 
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NOMENCLATURE 

A, B, C functions defined by equations Greek symbols 
(22b)-(22d) C! radius of sphere 

C specific heat capacity r ratio of properties 
F. G functions in Laplace space e characteristic temperature 
k conductivity i length scale defined in equation (25) 
in mass 11 dynamic viscosity 

67 heat flux 1’ kinematic viscosity 
n outward vector 7i 3.14159 
Pe Peclet number I-’ density 
PV Prandtl number t parameter with units of time. 

Q rate of heat transfer 
r radial coordinate Superscripts 
s transformed variable in Laplace space 0 pertaining to unperturbed field 
t time I pertaining to perturbation 
T temperature % evaluated far from the sphere 
D characteristic relative velocity of the dimensionless 

particle Laplace transform 
1 fluid velocity in x coordinates pertaining to the auxiliary field used in 
V velocity of sphere equation (21c). 
11 fluid velocity in z coordinates 
X fixed coordinate system Subscripts 
Y coordinate of the sphere in x f fluid 

system i, j, k indices 
Z coordinates moving with the sphere. S sphere. 

fluid is non-uniform in time and of course is a space Hence, the functional relationship for the temperature 
function too. Heat may be transferred from the sphere of the fluid and the relative velocity of the fluid with 
to the fluid through conduction at the spherical respect to the sphere become : 
boundary. The energy equation for the fluid in the 
Eulerian coordinate system O.X,.U~.U~ may be written as r, (x, t) = Tt (z, r), (34 

follows : and 

where p is the density, c is the specific heat capacity, 
k the thermal conductivity and T the temperature of 
the Auid ; P, is the component of the fluid velocity in 
the ith direction (as modified by the presence of the 
sphere) and t the time. The subscript f denotes fluid 
properties and related variables, while the subscript s 
will be used to denote properties and variables related 
to the sphere. It is assumed that the flow is slow 
enough for the dissipation term /c@ to be neglected in 
the energy equation for the Auid. It is also assumed 
that the sphere is rigid. Hence. its velocity satisfies the 
appropriate equation of motion. but is a function of 
time only. 

For the calculations involving the sphere it is con- 
venient to use a Lagrangian coordinate system moving 
with the sphere. 0z,z2z3. If the coordinates of the center 
of the sphere are Y,(t) with respect to the Eulerian 
system O.X,.X~.X~ and the sphere moves with velocity 
V,(r) then the new system of coordinates is defined 
as : 

z =x-Y(t). (2) 

w(z, t) = v(x, t) -V(t). (3b) 

The energy equation for the fluid in the new coor- 
dinate system is, hence, transformed to the following : 

The boundary conditions are that on the surface of 
the sphere the temperature of the fluid is equal to 
that of the sphere and that far from the sphere the 
temperature of the Auid approaches a given value, 
which is not influenced by the presence of the sphere : 

Tt (z, I) = T, (I) at/z1 =x 

nnd 

r, (2, t) = T,’ (z. t) as / z / ---f %, (4b) 

where T; is the non-uniform temperature field of the 
fluid far from the sphere. 

For simplicity it is assumed that the thermal con- 
ductivity of the sphere is much larger than the thermal 
conductivity of the fluid. This implies that the Biot 
number for the sphere is much smaller than unity 
(W CC 1). As a result any temperature gradients inside 
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the sphere may be neglected. Hence, the temperature The boundary conditions for the disturbance tem- 
of the sphere is uniform in space, but still remains a perature field due to the presence of the sphere are 
function of time, T,(t). Under this condition the given as follows : 
energy equation of the sphere is considerably sim- 
plified and may be written with respect to the rate of T:(z, t) = T,(I)- TF(z, t) at IzI = x (9a) 

heat crossing its boundaries as follows : and 

dTs 
m,c,dt= - T:=O at lz/+z. (9b) 

The calculation of the total heat transfer from the 
where the surface integral is evaluated on the surface sphere rests on calculating the total heat flux from 
of the sphere. The vector q denotes the heat flux at the the surface of the sphere due to the two unsteady 
surface of the sphere and the vector n is the outward temperature fields TF(z,, t) and Tj (z,, t). These fields 
normal. Since the heat flux crosses from the sphere to are the consequence of the initial undisturbed tem- 
the fluid at the boundary, the heat flux that crosses pcraturc field and the disturbances the prcscncc of the 
the boundary of the sphere may be written in terms sphere produces. 
of the local fluid temperature gradient : 

q = -krVTr(z,f),,,=,, (6a) 
Heat transfer due to the undisturbed temperaturejield 

First the rate of heat crossing the spherical bound- 
or in indicial notation : ary due to the undisturbed temperature of the fluid 

will be calculated. For this purpose a control volume 

(6b) of the fluid is assumed, which occupies the volume of 
the sphere, moves with the same velocity V, (t) and its 

It is apparent from equations (5), (6a) and (6b) that center is located at Y,(t) at all times. There is heat 

in order to calculate the change in the temperature of transfer from the control volume due to the tem- 

the sphere one needs the total rate of heat flow from perature field TfO(x,, t), which is due to the tempera- 

the surface of the sphere as a function of time. This ture gradient of this temperature field. This rate of 

heat transfer rate will be calculated in the following heat transfer may be written in terms of the tem- 

sections for an arbitrary temperature field of the fluid. perature gradients as follows : 

k,VTF*ndS = k,V’TF dV. 
CALCULATION OF THE HEAT TRANSFER RATE 

-$qomnds=f [, 

Decomposition qf thejluid temperature field (IO) 
The method of small perturbations is used to take 

advantage of the small temperature field disturbance 
The last integral is evaluated inside the control volume 

due to the presence of the sphere. Thus, the fluid 
that would have been occupied by the fluid in the 

temperature field is decomposed into two fields, 
absence of the sphere. In this small volume the undis- 

TF (z, , t), the undisturbed temperature field, which is 
turbed temperature field TF (xl. t) may be approxi- 

not influenced by the presence of the sphere, and 
mated by a second-order Taylor expansion as follows : 

Ti (z~, t) the disturbance field, which is entirely due to 
the influence of the heat transfer from the sphere. T,“(x, t) = Ti’(Y(t). t) + [x, - Y,(t)] 2 

’ I X-Y,,) 
Similarly the velocity field is decomposed into two 
velocities, w” the velocity of the control volume of the 
fluid in the absence of the sphere and w,’ the velocity +f[x- Y,(t),[.x- Y,(t)]=1 

dx, dx, x=Y(r). (11) 

perturbation induced by the presence of the rigid 
sphere. The energy equations for the two temperature The partial derivatives are to be evaluated at Y,(t), 
fields with respect to the coordinate system moving the point where the center of the sphere is present at 
with the sphere are : time t. The Laplacian operator in (10) may be evalu- 

ated to yield for the rate of heat transfer due to the 
undisturbed flow : 

and 

Since the undisturbed flow held may be arbitrarily 
imposed, its boundary conditions will not be specified. where u, is the undisturbed fluid velocity without the 

- 
(P 

q” .ndS = ~rcr’k,V’Tj lx _zy,,,, (12) 
.’ 

and. since the undisturbed temperature field 7’: must 
also satisfy the energy equation, 
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presence of the sphere in the stationary frame of ref- 
erence. One may obtain by substitution of the equa- 
tion (I 2) into (13) the rate of heat transfer due to the 
undisturbed temperature field : 

Q DT: 
- 

.s 
q” *ndS = ~ncc’p,~,~ ,=y(,, 

DTE’ 
= micI T\r 

“’ lx-b,,1 

where nzr is the mass of the fluid which would have 
occupied the volume of the sphere in its absence and 
D/Dr is the Lagrangian derivative with respect to the 
stationary system of coordinates OX,_L++ It is thus 
seen that the contribution of the undisturbed fluid to 
the heat transferred from the sphere is the same as it 
the sphere were a control volume occupied by the fluid 
itself. The total rate of heat flow from the sphere is 
given by the quantity in equation (14) plus the rate of 
heat due to the disturbance temperature field r,! : 

JIq.ndS=~q”ndSi~q’.ndS. (15) 

Dimensionless form of the perturbation jeld 
The energy equation due to the disturbance caused 

by the presence of the sphere is given by equation (8). 
Given that the size of the sphere is small in comparison 
to the characteristic dimension of the fluid domain, it 
is expected that some terms in equation (8) may be 
much smaller than others and, hence, they should be 
neglected. For this reason equation (8) will be written 
in dimensionless form by defining the following 
dimensionless parameters : 

T; = Of’,! (16a) 

t=r,i (16b) 

I,‘, = c’\?, (16~) 

z, = x2,. (164 

where the carets denote dimensionless quantities. U 
is the characteristic velocity of the system; 0 is the 
characteristic temperature difference of the system 
(e.g. the initial temperature difference between the 
particle and the fluid) ; T, is the characteristic time of 
the particle. The latter may be taken as the particle 
thermal response time, which is equal to p,c,r2 ‘k,. 
Thus, equation (8) for the disturbance field may be 
written in dimensionless form as follows : 

The coefficient of the second term in the above 
equation is the Peclet number Pe. Because of the small 
size of the sphere, the calculations for the temperature 

field due to the disturbance will be made for very small 
Peclet numbers. This assumption is analogous to the 
low Reynolds number assumption for the sphere 
(creeping flow assumption). The justification for this 
assumption lies in the fact that in creeping flow the 
relative velocity of the sphere with respect to the fluid, 
and hence the characteristic particle velocity. U. is 
very small. As a consequence of the low Peclet 
numbers, in the calculations that follow, the con- 
vective terms in the energy equation will be neglected. 
Thus, the creeping flow energy equation for the sphere 
(in dimensional form) becomes : 

A swzmetry relationship qf’ temperature fields at IOH 
P&et numbers 

The heat transfer integral due to the temperature 
field disturbance Ti (z, , t), which is caused by the pres- 
ence of the sphere, may be written as follows : 

where TE satisfies equation (18) and the boundary 
conditions (9a) and (9b). 

It is not necessary to have a complete knowledge of 
the function T: (q, t) in order to obtain the heat trans- 
fer integral of equation (16). The method followed in 
this paper is to evaluate this integral by the use of 
Laplace transformations. Since T: is an unsteady 
field, its Laplace transform is obtained and the heat 
integral is evaluated in the Laplace domain. Sub- 
sequently the heat transfer integral is transformed 
back into the time domain to yield the complete energy 
equation for the sphere. This method is similar to the 
one used by many others in the derivation of the 
equation of motion of the sphere, such as Sy et al. [8] 
and Maxey and Riley [3]. 

In order to obtain the rate of heat transfer in the 
Laplace space it is necessary to derive first a symmetry 
relation between two temperature fields, T and T’, 
which obey the energy equation without the con- 
vective term (according to the low Peclet number 
assumption) Burgers [9] derived a similar expression 
for the equation of motion of a particle in terms of 
\trcsses and velocities 

First consider two unsteady temperature fields 
T(:,. t) and T’(z,, t) in a volume r’ bounded by a 
surface S. Both of them satisfy the energy equation 
for the creeping flow : 

with 

y, = -k, i-T i?, GObI 
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Second. by considering the volume integral of the 
function, 

where the overbar denotes the transformed variable 
in the Laplace space, and, by applying Gauss‘s 
theorem, the following symmetry relation is obtained 
for the two temperature fields T(;,, t) and T’(z,, t) : 

P [nz, s)q’,(z. s) -T(z, s)y,(z, s)]y dS 
s 

= p,(.,[~(z,s)T’(z,O) T[z,O)T’(z,.v)] dJ; (2la) 

Tf (z, f) = A +z, B, +$Qz, C,,, with Ti (z,O) = 0. 

(22a) 

The coefficients A, B, and C,, are functions of time. 
Their values on the surface of the sphere are obtained 
by a match of the disturbance temperature field with 
the undisturbed flow field in the interior of the sphere. 
A Taylor expansion of the undisturbed temperature 
held 7’: (.u,. 1) around the center of the sphere Y,(r) 
yields the three coefficients of the expansion terms as 
follows : 

A = T, (t) - T; (z = 0, t) (22b) 

(22c) 

where n, is the outward normal unit vector. Under the 
condition that both 7’ and T’ are continuous and 
approach zero far from the sphere, V is the volume 
which includes the whole of the flow domain except 
the volume of the sphere and S is the surface of the 
sphere. In equation (21a) the parentheses enclose 
arguments of the functions and multiplications are 
denoted by the square brackets only. 

This symmetry relation will be applied to the tem- 
perature field Tf generated in the fluid by the dis- 
turbance caused by the sphere. The temperature field 
T’(z,, t) in the symmetry relation will be conveniently 
defined and T(z,, t) will be later identified with the 
disturbance field T: (zL, t). 

Calculation of the heat tram@ due to the disturbance 
temperature,field 

The temperature field T’(z,, t) may be conveniently 
chosen to assist in the calculation of the heat transfer 
due to the field temperature T(z,, t). Here T’ is chosen 
to satisfy the following boundary and initial con- 
ditions : 

T’(z,tgO)=O and T’(z,s)=l on jzI=r. 

(2lb) 

Thus, the temperature held T’ results from a sphere 
at zero initial temperature which experiences an 
impulse of temperature, 6 (t) Since the Laplace trans- 
form of T’ is equal to 1, the symmetry relation (18) 
and the boundaryyinitial conditions (19) yield the 
following equation for the heat transfer due to the 
temperature field T(:,. t) : 

+ 
J 

p,crT’T,,_,, dV. (21~) 
\ 

The temperature field T(z,, t) is assigned to be equal 
to the disturbance temperature held Tp(x,, t). This 
field may be expressed on the surface of the sphere as 
a quadratic function of the coordinate system whose 
origin is at the center of the sphere : 

and 

(224 

The coefficients, which are known from the above 
expressions, are substituted into the rate of heat trans- 
fer equation from the sphere (20) to yield the fol- 
lowing expression : 

- 
FF 

q,n, dS = - 
P 

Tzn, dS = - (A+&, 
s s i s 

+ ;C,z,z,)q;n, dS. (23) 

Thus the heat transfer due to the disturbance field 
may be calculated from the last two integrals in equa- 
tion (23) which include the temperature T and the 
heat flux associated with the “auxiliary” temperature 
field T’. We will proceed to calculate the Laplace 
transform of this heat flux. It is recalled that the tem- 
perature held T(z,, t) must also satisfy the creeping 
flow heat transfer equation. Hence, the following 
expression for the Laplace transform of T(z,. t) is 
obtained : 

,sT’_ k, i?‘T’ 

Pf”‘ (72, ?Z, ’ 
(24a) 

or in spherical coordinates, 

.\.F kf 1 i ),l i7;; 
p,ci rz ?r i i ?r 

= 0. (24b) 

where .s is the Laplace transform variable. Equation 
(24b) is rearranged to yield the following expression, 
which is more convenient to solve : 

(2 T’ 2 iT’ ~~.. - + -. -i’T’ = (). 
c’2 r ?I 

(25) 

where. 

j,‘=J- and z_ =!A%, 

^*f Pf ct 

The general solution of equation (25) in the Laplace 
domain is easily obtained as follows : 
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The Laplace transform of T’ must vanish in the far 
field. This yields F(s) = 0 everywhere in the tem- 
perature domain. The quantity G(s) is evaluated by 
the application of the second condition of equation 
(2 1 b) namely that the Laplace transform of T’ on the 
surface of the sphere is equal to one. This condition 
yields : 

(27) 

Hence, the rate of heat transfer due to the temperature 
field 7” in the Laplace domain may be obtained as 
follows : 

On the surface of the sphere, where Y = r and n, = :,/SC, 
the last equation gives the following expression for 
the heat flux : 

Substitution of (29) into (22) yields the following 
relationship for the Laplace transform of the total 
heat transfer due to the disturbance field r,‘(z,, t) on 
the surface of the sphere : 

t&y) = - P I 

zn, dS = _ kf(ly+ia) 

A c I In 

X (A+&;, +:cz,z,)a’ sin 0 d4dH. (30) 
,i = 0 ‘J-0 

From its definition, C,, is a symmetric tensor. The last 
integral in equation (30) is calculated by the expansion 
of its components in the spherical coordinates 
(r, 0, 4). It was observed that, because of the spherical 
symmetry on the surface of the sphere, the off-diag- 
onal terms of the tensor C,, and all the terms associated 
with the vector R, did not contribute to the integral. 
Actually the following expression is obtained for the 
Laplace transform of the heat transfer, due to the 
disturbance temperature field : 

(31) 

The inverse Laplacc transform of the last expression 
may be calculated to obtain the rate of heat transfer 
Q(t) in the time domain due to the disturbance tem- 
perature field r:(z,, t) : 

Q(f) = - q,n, d,‘$= L ’ P s 

-kf(la+ia) 

x[47-&A+jncc’C,,] = -4~ak,[A(t)+~a’C,,(r)l 

-4na2kfL-~ {i.[A(.s)+~a’C,,(s)]}, (32) 

where i, is the quantity associated with the Laplace 
transform variable s [i = J(s/af)J. Since the square 
root of the variable J appears in the above expression 
one expects that a history integral will be generated in 
the expression for the heat transfer due to the dis- 
turbance temperature field. 

The inverse Laplace transform of the iasl part of 
equation (32) is obtained by the use of the convolution 
theorem to yield : 

L-’ [i(A+ :C,)] = d7, (33) 

where 7 is a dummy variable, which results from the 
use of the convolution integral and is used only in 
calculating the resulting history integral. The func- 
tions A(7) and C,,(z) are obtained from the matching 
conditions as appear in equations (22b) and (22d) : 

A(7) = T,(7)-T,0(z,7)12=, (34a) 

a2 T,O (2, 7) 
C,,(7) = - a_ & (34b) 

‘,I 1 ,z--0 

The heat flux associated with the disturbance field 
T:(z,, t) was previously identified as q,‘(z,, t). Therefore, 
the function of the heat transfer due to the disturbance 
temperature field T:(z,, t) in the time domain, Q(t), 
may be written in a final form as follows : 

Q(t) = - 
P 

q,‘n, dS = -4dk, 
s 

(35) 

The rate of heat transfer due to the undisturbed 
temperature field as calculated above is added to the 
rate of heat transfer due to the disturbance tem- 
perature field caused by the presence of the particle, 
to yield the total heat transfer from the sphere to the 
fluid as expressed in equation (15). The combination 
of the two rates of heat transfer leads to the following 
differential equation for the temperature variation of 
the sphere : 
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X J 
._ .__._ (jt. 

0 [m,(t-Tt)]’ 2 
(36) 

Of the terms which appear in equation (36) the first 
one represents the rate of change of the temperature 
of the sphere. The second ia the rate of heat that would 
have entered the control volume occupied by the 
sphere in the absence of the latter. This term is anal- 
ogous to the “added mass” term of the equation of 
motion of the sphere. The third term accounts for the 
conduction from the sphere to the fluid due to the 
temperature difference and the curvature of the tem- 
perature field. The fourth term is the history integral. 
which appears because of the temporal as well as the 
spatial variation of the temperature field. This term is 
equivalent to the history term of the equation of 
motion, which is sometimes called “the Basset term”. 
The last term accounts for the effect of all the previous 
temperature changes of the sphere to the current tem- 
perature change. It was found by Li and Michaelides 
[lo] and Vojir and Michaelides [5] that this term plays 
an important role in the determination of the current 
acceleration in the equation of motion of a sphere, 
sometimes accounting for as much as 25% of the 
instantaneous acceleration. It was also found out that 
Boussinesq [l] obtained the same term for the equa- 
tion of motion three years before Basset [2]. 

In order to obtain a qualitative estimate of the 
importance of all the terms in equation (36) a dimen- 
sionless analysis is performed. Temperatures are made 
dimensionless by a reference temperature 0. The ther- 
mal response time z, = (psc,r2)/k,is used as the charac- 
teristic time of the particle. The thermal response time 
is used to render both / and z dimensionless and the 
characteristic dimension of the undisturbed flow field 
L is used to make the z, length dimensionless. The 
dimensionless variables arc denoted by a caret. Hence. 
the dimensionless energy equation of the sphere 
becomes : 

0 1 
dt^. (37) 

It is apparent from equation (37) that the dimcn- 

sionless variable q = p$dp,c, determines the order of 
magnitude of the various terms. Given that the specific 
heats of most common solids and fluids (including 
gases) are of the same order of magnitude (1 kJ kg 
K ‘), then 9 scales as the ratio of the fluid to sphere 
densities. It is apparent that the first and third terms 
of the r.h.s. in equation (37) may be neglected in the 
case of gas-solid flows. However, it is expected that 
both of these terms will play an important role in the 
calculations of solids-liquid flows, where q is of the 
order of unity. Numerical calculations on the import- 
ance of the history term in the equation of motion of 
the sphere have been performed in [5 and lo]. It was 
observed that the history term may account for as 
much as 25% of the instantaneous acceleration of the 
sphere and that it strongly depends on the frequency 
of the variation of the fluid velocity. It was also found 
that the history term influenced the time-averaged 
parameters by up to 10% at low to medium frequenc- 
ies. By analogy one expects similar dependence of the 
history term on the heat transfer from a fluid to a 
solid sphere, depending on the frequency of variation 
of the temperature domain. 

It appears that the effect of the history term will be 
immense in the case of bubbly flows, where the ratio 
‘1 is of the order of 1000. However, the authors do not 
wish to speculate on the importance of this term in 
bubbles, because some of the assumptions made in 
this study (e.g. low Biot number, rigid sphere) are not 
compatible with observations in bubbly flows. 

It must be pointed out that the third component in 
the square brackets of the second and third terms 
in the r.h.s. of equation (37) scales as (a/L)‘. This 
component corresponds to Oseen’s correction terms 
in the equation of motion of the sphere. The correction 
terms are very small in the energy equation and may 
be neglected (as in the equation of motion) unless the 
temperature gradients are very high. 

CONCLUSIONS 

The unsteady heat transfer equation from a sphere 
moving in a viscous fluid was written in terms of the 
temperatures of the sphere and the fluid. The resulting 
temperature field was decomposed into two parts : the 
undisturbed unsteady temperature field in the absence 
of the sphere and the disturbance due to the presence 
of the sphere. The contribution to the change of the 
temperature of the sphere is obtained from the heat 
transfer due to the undisturbed flow and temperature 
field. By the use of a symmetry relationship between 
two temperature fields, the rate of heat transfer due 
to the disturbance of the temperature field caused by 
the presence of the sphere is first obtained in the 
Laplace domain and subsequently in the time domain. 
This rate of heat transfer reveals a history integral, 
which synthesizes the effects of all previous tem- 
perature changes of the sphere on the current tem- 
perature change. The term of the history integral is 
analogous to the history force or “Basset force”, 
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which appears in the equation of motion of the sphere. 
A dimensional analysis shows that this term will be 
of importance in liquid-solid heat transfer and by 
analogy in liquid-solid mass transfer processes. 
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